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Abstract

This paper is concerned with the linear theory of elastic materials with voids. The Dirichlet and Neumann problems

for a half-space are studied by using the technique of integral transforms. The case of a concentrated body load is

investigated in detail.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of materials with voids was initiated by Nunziato and Cowin (1979). In recent years
this theory has been a subject of intensive study. The intended application of the theory are to geologi-

cal materials and to manufactured porous materials. In this theory, the bulk density is written as the

product of two fields, the matrix material density field and the volume fraction field. This representation

introduces an additional degree of kinematic freedom. The linear theory of elastic material with voids has

been established by Cowin and Nunziato (1983). Various applications of the theory were presented by

Cowin and Puri (1983), Cowin (1983), Chandrasekharaiah (1989), Scarpetta (1990) and Ciarletta and Ies�an
(1993).

In this paper we consider the equilibrium theory of an elastic material with voids that occupies a half-
space and is subjected to an axially symmetric deformation. First, we employ the technique of integral

transforms to obtain a general solution of the Lam�ee equations for an arbitrary system of loads. Then, we

study the case of a half-space with a fixed boundary and subjected to a concentrated extrinsic equilibrated

body force. The stresses have been evaluated at the boundary and the displacement field and the volume

fraction field have been determined in the interior of the body. The problem of a half-space with a stress-

free boundary is also investigated.
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2. Basic equations

Throughout this section B is a regular region of the three-dimensional Euclidean space. We let oB denote

the boundary of B, and designate by n the outward unit normal of oB. We assume that the region B is
occupied by a linearly elastic material with voids. The body is referred to a system of rectangular Cartesian

axes Oxi: Throughout this paper, Latin indices have the range 1–3. Let u be the displacement field over B:
The linear strain measure eij is given by
eij ¼
1

2
ðui;j þ uj;iÞ: ð2:1Þ
We use subscripts preceded by a comma for partial differentiation with respect to the corresponding co-
ordinate.

Let tij be the stress tensor and let hi be the equilibrated stress vector. The components of surface traction

ti and the equilibrated stress h at a regular point of oB are given by
ti ¼ tjinj; h ¼ hini; ð2:2Þ
respectively.

The equilibrium equations are
tji;j þ fi ¼ 0; hi;i þ g þ l ¼ 0; ð2:3Þ
where fi are the components of body force, g is the intrinsic equilibrated body force, and l is the extrinsic
equilibrated body force.

In the case of centrosymmetric isotropic material the constitutive equations are
tij ¼ kerrdij þ 2leij þ budij;

hi ¼ au;i;

g ¼ �berr � fu;

ð2:4Þ
where u is the volume fraction function, dij is Kronecker�s delta, and k, l, b, a and f are constitutive

coefficients. We restrict our attention to homogeneous materials so that the constitutive coefficients are

constants. We assume that the internal energy density is a positive definite form. This assumption implies

that (Cowin and Nunziato, 1983)
l > 0; a > 0; f > 0; 2l þ 3k > 0; ð2l þ 3kÞf > 3b2: ð2:5Þ
3. Axially symmetric problems

We assume that the region B from here on refers to the half-space x3 > 0. In what follows we are in-

terested in axially symmetric problems with the displacement field and the volume fraction being specified

in cylindrical coordinates ðr; #; zÞ as follows

ur ¼ uðr; zÞ; u# ¼ 0; uz ¼ wðr; zÞ; u ¼ uðr; zÞ; ðr; zÞ 2 I: ð3:1Þ
The geometrical equations become
err ¼
ou
or

; e## ¼ u
r
; ezz ¼

ow
oz

; erz ¼
1

2

ou
oz

�
þ ow

or

�
; er# ¼ 0; e#z ¼ 0: ð3:2Þ
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The constitutive equations reduce to
trr ¼ keþ 2lerr þ bu; t## ¼ keþ 2lr�1uþ bu;

tzz ¼ keþ 2lezz þ bu; tr# ¼ t#z ¼ 0;

trz ¼ 2lerz; hr ¼ a
ou
or

; h# ¼ 0;

hz ¼ a
ou
oz

; g ¼ �be� fu;

ð3:3Þ
where
e ¼ 1

r
o

or
ðruÞ þ ow

oz
: ð3:4Þ
In the case of axisymmetry the equilibrium equations take the form
otrr
or

þ otrz
oz

þ 1

r
ðtrr � t##Þ þ fr ¼ 0;

otrz
or

þ otzz
oz

þ 1

r
trz þ fz ¼ 0;

1

r
o

or
ðrhrÞ þ

ohz
oz

þ g þ l ¼ 0:

ð3:5Þ
Eqs. (3.5) can be expressed in terms of u, w and u
l D

�
� 1

r2

�
uþ ðk þ lÞ oe

or
þ b

ou
or

þ fr ¼ 0;

lDwþ ðk þ lÞ oe
oz

þ b
ou
oz

þ fz ¼ 0;

aDu � be� fu þ l ¼ 0;

ð3:6Þ
where
D ¼ o2

or2
þ 1

r
o

or
þ o2

oz2
: ð3:7Þ
We assume that all stresses, displacements and volume fraction vanish at infinity.

We introduce the following Hankel-transforms (Sneddon, 1972)
Uðn; zÞ ¼
Z 1

0

ruðr; zÞJ1ðnrÞdr;

W ðn; zÞ ¼
Z 1

0

rwðr; zÞJ0ðnrÞdr;

Uðn; zÞ ¼
Z 1

0

ruðr; zÞJ0ðnrÞdr;

ð3:8Þ
where JnðzÞ is the Bessel function of the first kind and nth order. Applying Hankel transformation to Eqs.
(3.6), we obtain
½lD2 � ðk þ 2lÞn2	U � ðk þ lÞnDW � bnU þ F ¼ 0;

ðk þ lÞnDU þ ½ðk þ 2lÞD2 � ln2	W þ bDU þ G ¼ 0;

½aðD2 � n2Þ � f	U � bnU � bDW þ L ¼ 0;

ð3:9Þ
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where we have used the notations
D ¼ d

dz
; F ðn; zÞ ¼

Z 1

0

rfrðr; zÞJ1ðnrÞdr;

Gðn; zÞ ¼
Z 1

0

rfzðr; zÞJ0ðnrÞdr; Lðn; zÞ ¼
Z 1

0

rlðr; zÞJ0ðnrÞdr:
ð3:10Þ
In what follows we designate by g the Laplace transform of the function g with respect to z, i.e.,
gðn; pÞ ¼
Z 1

0

gðn; zÞe�pz dz; Rep > 0:
From (3.9) we obtain the equations
½lp2 � ðk þ 2lÞn2	U � ðk þ lÞnpW � bnU ¼ R;
ðk þ lÞnpU þ ½ðk þ 2lÞp2 � ln2	W þ bpU ¼ S;
½aðp2 � n2Þ � f	U � bnU � bpW ¼ T ;

ð3:11Þ
where
R ¼ lðU ð1Þ þ pU ð0ÞÞ � ðk þ lÞnW ð0Þ � F ;
S ¼ ðk þ lÞnU ð0Þ þ ðk þ 2lÞðW ð1Þ þ pW ð0ÞÞ � G;
T ¼ aðUð1Þ þ pUð0ÞÞ � bW ð0Þ � L;
U ð1ÞðnÞ ¼ ðDUÞðn; 0Þ; U ð0ÞðnÞ ¼ Uðn; 0Þ;
W ð1ÞðnÞ ¼ ðDW Þðn; 0Þ; W ð0ÞðnÞ ¼ W ðn; 0Þ;
Uð1ÞðnÞ ¼ ðDUÞðn; 0Þ; Uð0ÞðnÞ ¼ Uðn; 0Þ:

ð3:12Þ
We introduce the notations
q2 ¼ 1

aðk þ 2lÞ ½fðk þ 2lÞ � b2	; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ q2;

q

K ¼ aðp2 � n2Þ2ðp2 � s2Þ; a ¼ laðk þ 2lÞ;
C1 ¼ RM þ SN þ TQ; C2 ¼ RM
 þ SN 
 þ TQ
;

C3 ¼ lðp2 � n2Þ½bnRþ bpS þ ðk þ 2lÞðp2 � n2ÞT 	;
M ¼ alðp2 � n2Þ2 þ ðp2 � n2Þ½aðk þ lÞp2 � fl	 þ p2½b2 � fðk þ lÞ	;
N ¼ pn½aðk þ lÞðp2 � n2Þ þ b2 � fðk þ lÞ	;
Q ¼ blnðp2 � n2Þ; M
 ¼ �pnfðk þ lÞ½aðp2 � n2Þ � f	 þ b2g;
N 
 ¼ ½lðp2 � n2Þ � ðk þ lÞn2	½aðp2 � n2Þ � f	 � b2n2;

Q
 ¼ �blpðp2 � n2Þ:

ð3:13Þ
It follows from (3.11) that for K different from zero we have
ðU ;W ;UÞ ¼ 1

K
ðC1;C2;C3Þ: ð3:14Þ
The function U , W and U must have no singularities in the right half-plane of the variable p. This fact

implies the conditions
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Ckðn; nÞ ¼ 0;
oCk
op

ðn; nÞ ¼ 0; Ckðn; sÞ ¼ 0: ð3:15Þ
The conditions (3.15) reduce to
Rðn; nÞ þ Sðn; nÞ ¼ 0;

c1Rðn; nÞ þ c2Sðn; nÞ þ c3T ðn; nÞ þ nRðnÞ ¼ 0;

k½nRðn; sÞ þ sSðn; sÞ	 þ q2T ðn; sÞ ¼ 0;

ð3:16Þ
where
qc1 ¼ 2a½ðk þ lÞn2 � ðk þ 2lÞq2	; qc2 ¼ ðk þ lÞð2an2 � fÞ þ b2;

qc3 ¼ 2bln; q ¼ b2 � fðk þ lÞ; k ¼ b
k þ 2l

;

RðnÞ ¼ lU ð0ÞðnÞ þ ðk þ 2lÞW ð0ÞðnÞ � oF
op

ðn; nÞ � oG
op

ðn; nÞ:

ð3:17Þ
It is easy to see that the relations (2.5) imply that q is different from zero.

In view of (3.12), the relations (3.16) take the form
lðU ð1Þ þ nU ð0ÞÞ þ ðk þ lÞnðU ð0Þ � W ð0ÞÞ þ ðk þ 2lÞðW ð1Þ þ nW ð0ÞÞ ¼ ðF þ GÞðn; nÞ;

c1 lðU ð1Þ�
þ nU ð0ÞÞ � ðk þ lÞnW ð0Þ�þ c2 ðk

�
þ lÞnU ð0Þ þ ðk þ 2lÞðW ð1Þ þ nW ð0ÞÞ

�
þ c3 aðUð1Þ�

þ nUð0ÞÞ � bW ð0Þ�þ n lU ð0Þ�
þ ðk þ 2lÞW ð0Þ�

¼ c1F ðn; nÞ þ c2Gðn; nÞ þ c3Lðn; nÞ þ n
oF
op

�
þ oG

op

�
ðn; nÞ;

k n lðU ð1Þ��
þ sU ð0ÞÞ � ðk þ lÞnW ð0Þ�þ s ðk

�
þ lÞnU ð0Þ þ ðk þ 2lÞðW ð1Þ þ sW ð0ÞÞ

�	
þ q2 aðUð1Þ�

þ sUð0ÞÞ � bW ð0Þ� ¼ knF ðn; sÞ þ ksGðn; sÞ þ q2Lðn; sÞ:

ð3:18Þ
In what follows we consider two cases: (i) a half-space with a fixed boundary; (ii) a half-space with a stress-

free boundary. The method of integral transforms has been used to study axisymmetric problems in various

theories of continua (see, e.g. Nowacki, 1971; Sneddon, 1962; Khan and Dhaliwal, 1977).
4. The Dirichlet problem––concentrated body loads

In this section we consider that the boundary z ¼ 0 is fixed and consider the boundary conditions
u ¼ 0; w ¼ 0; u ¼ 0 at z ¼ 0: ð4:1Þ

In this case we have U ð0Þ ¼ 0, W ð0Þ ¼ 0, Uð0Þ ¼ 0 and the conditions (3.18) reduce to
lU ð1Þ þ ðk þ 2lÞW ð1Þ ¼ N1;

c1lU
ð1Þ þ c2ðk þ 2lÞW ð1Þ þ c3aUð1Þ ¼ N2;

knlU ð1Þ þ ksðk þ 2lÞW ð1Þ þ q2aUð1Þ ¼ N3;

ð4:2Þ
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where
N1ðnÞ ¼ F ðn; nÞ þ Gðn; nÞ;

N2ðnÞ ¼ c1F ðn; nÞ þ c2Gðn; nÞ þ c3Lðn; nÞ þ n
oF
op

�
þ oG

op

�
ðn; nÞ;

N3ðnÞ ¼ knF ðn; sÞ þ ksGðn; sÞ þ q2Lðn; sÞ:

ð4:3Þ
The solution of the system (4.2) is given by
lU ð1Þ ¼ 1

d
d1; ðk þ 2lÞW ð1Þ ¼ 1

d
d2; aUð1Þ ¼ 1

d
d3; ð4:4Þ
where
d ¼ ðc2 � c1Þq2 � kc3ðs � nÞ; d1 ¼ N1ðq2c2 � ksc3Þ � N2q2 þ c3N3;

d2 ¼ q2N2 � c3N3 � N1ðq2c1 � kc3nÞ;

d3 ¼ ðc2 � c1ÞðN3 � knN1Þ � kðs � nÞðN2 � c1N1Þ;

qðc2 � c1Þ ¼ ðk þ 3lÞf � b2:

ð4:5Þ
We introduce the Hankel-transforms
Tzzðn; zÞ ¼
Z 1

0

rtzzðr; zÞJ0ðnrÞdr;

Tzrðn; zÞ ¼
Z 1

0

rtzrðr; zÞJ1ðnrÞdr;

Pzðn; zÞ ¼
Z 1

0

rhzðr; zÞJ0ðnrÞdr:

ð4:6Þ
It follows from (3.3) that
Tzz ¼ ðk þ 2lÞDW þ knU þ bU;

Tzr ¼ lðDU � nW Þ; Pz ¼ aDU:
ð4:7Þ
In view of (4.1), (4.4) and (4.7) we obtain
tzzðr; 0Þ ¼ H0½Z2ðnÞ; n ! r	;

tzrðr; 0Þ ¼ H1½Z1ðnÞ; n ! r	;

hzðr; 0Þ ¼ H0½Z3ðnÞ; n ! r	;

ð4:8Þ
where Zk ¼ dk=d and
Hn½gðnÞ; n ! r	 ¼
Z 1

0

ngðnÞJnðnrÞdn: ð4:9Þ
Similarly, from (3.3) and (4.4) we find that
trrðr; 0Þ ¼ t##ðr; 0Þ ¼
k

k þ 2l
tzzðr; 0Þ;

hrðr; 0Þ ¼ 0; gðr; 0Þ ¼ � b
k þ 2l

tzzðr; 0Þ:
ð4:10Þ
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Now, we consider the case of a concentrated extrinsic equilibrated body force. We assume that
fr ¼ 0; fz ¼ 0; l ¼ � P
2pr

dðrÞdðz� hÞ; h > 0; ð4:11Þ
where P is a given constant and d is the Dirac measure. Thus, we obtain
F ¼ 0; G ¼ 0; L ¼ � P
2p

e�ph: ð4:12Þ
In this case, from (4.3) we have
N1 ¼ 0; N2 ¼ c3Lðn; nÞ; N3 ¼ q2Lðn; sÞ: ð4:13Þ
By (4.8) we find the following stresses at the boundary
tzzðr; 0Þ ¼ � P
pq

blq2
Z 1

0

1

dðnÞ n2ðe�nh � e�shÞJ0ðnrÞdn;

tzrðr; 0Þ ¼ � P
pq

blq2
Z 1

0

1

dðnÞ n2ðe�sh � e�nhÞJ1ðnrÞdn;

hzðr; 0Þ ¼ � P
2pq

Z 1

0

1

dðnÞ ½ðc2 � c1Þq2qe�sh � 2kðs � nÞblne�nh	nJ0ðnrÞdn:

ð4:14Þ
From (4.10) we can obtain trr, t## and g for z ¼ 0.

Let us study now the effects inside the body. It follows from (3.13) and (3.14) that
ðU ;W ;UÞ ¼ 1

2pia

Z
C

ezp

ðp2 � s2Þðp2 � n2Þ2
ðC1;C2;C3Þðn; pÞdp; ð4:15Þ
where C is the Bromwich path of integration and i ¼
ffiffiffiffiffiffiffi
�1

p
. In the case of the body loads (4.11) the functions

Ck have the form
Ck ¼ Ake�ph þ Bk; ð4:16Þ
where Ak and Bk are polynomials in p with coefficients that depend on n. In the right-half of p-plane U , W
and U, as functions of p, have no poles. The integrands in (4.15) have one double pole at p ¼ �n and a

single pole at p ¼ �s. By using the method of residues we obtain, for z > h, the following expressions for U ,
W and U
4aq4n4ðU ;W ;UÞ ¼ nð2n2



� q2 � nq2zÞðC1;C2;C3Þðn;� nÞ � q2n2 o

op
ðC1;C2;C3Þðn;� nÞ

�
e�nz

� 2

s
n4ðC1;C2;C3Þðn;�sÞe�sz: ð4:17Þ
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From (3.12), (4.1), (4.4), (4.5) and (4.13) we find that
R ¼ Z1; S ¼ Z2; T ¼ Z3 � L;

d1 ¼ �d2 ¼ � P
pq

blnq2ðe�sh � e�nhÞ;

d3 ¼ � P
2pq

ðc2
�

� c1Þqq2e�sh � 2kðs � nÞblne�nh
�
:

ð4:18Þ
To obtain the functions U , W and U from (4.17) we note that
C1ðn;�nÞ ¼ C2ðn;�nÞ ¼ �2m2n2Z1; C3ðn;�nÞ ¼ 0;

m2 ¼ ðk þ lÞf � b2; C1ðn;�sÞ ¼ nP; C2ðn;�sÞ ¼ sP;

P ¼ kblðn þ sÞZ1 þ blq2 Z3

�
þ 1

2p
Pesh

�
;

C3ðn;�sÞ ¼ lq2 bðn



þ sÞZ1 þ ðk þ 2lÞq2 Z3
�

þ 1

2p
Pesh

��
;

oC1

op
ðn;�nÞ ¼ �n 4aðk

�
þ lÞn2 � 2aðk þ 2lÞq2 þ m2

�
Z1 � 2bln2 Z3

�
þ 1

2p
Penh

�
;

oC2

op
ðn;�nÞ ¼ �n 4aðk

�
þ lÞn2 � m2 þ 2lf

�
Z1 � 2bln2 Z3

�
þ 1

2p
Penh

�
;

oC3

op
ðn;�nÞ ¼ �4bln2Z1:

ð4:19Þ
In the case z < h, the functions Ak from (4.16) have no contribution in the expressions of U , W and U, and
we obtain
4aq4n4ðU ;W ;UÞ ¼ � 2

s
n4 ðB1;B2;B3Þðn;½ � sÞe�sz � ðB1;B2;B3Þðn; sÞesz	

þ nð2n2



� q2 � nzq2ÞðB1;B2;B3Þðn;� nÞ � q2n2 o

op
ðB1;B2;B3Þðn;� nÞ

�
e�nz

þ nðq2



� 2n2 � nq2zÞðB1;B2;B3Þðn; nÞ � q2n2 o

op
ðB1;B2;B3Þðn; nÞ

�
enz;

ð4:20Þ
where
B1 ¼
1

d
½ðM � NÞd1 þ Qd3	; B2 ¼

1

d
½ðM
 � N 
Þd1 þ Q
d3	;

B3 ¼
1

d
bðn
�

� pÞd1 þ ðk þ 2lÞðp2 � n2Þd3
�
lðp2 � n2Þ:

ð4:21Þ
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We note that
Mðn; sÞ ¼ Mðn;�sÞ ¼ klbn2; Nðn; sÞ ¼ �Nðn;�sÞ ¼ kblsn;

Qðn; sÞ ¼ Qðn;�sÞ ¼ blq2s; M
ðn; sÞ ¼ �M
ðn;�sÞ ¼ �kblsn;

N 
ðn; sÞ ¼ N 
ðn;�sÞ ¼ �kbls2; Q
ðn; sÞ ¼ �Q
ðn;�sÞ ¼ �blsq2;

Mðn; nÞ ¼ Mðn;�nÞ ¼ �m2n2; Nðn; nÞ ¼ �Nðn;�nÞ ¼ �m2n2;

Qðn; nÞ ¼ Qðn;�nÞ ¼ 0; M
ðn; nÞ ¼ �M
ðn;�nÞ ¼ m2n2;

N 
ðn; nÞ ¼ N 
ðn;�nÞ ¼ m2n2; Q
ðn; nÞ ¼ �Q
ðn;�nÞ ¼ 0;

B1ðn;�sÞ ¼ 1

d
blny1; B2ðn;�sÞ ¼ 1

d
blsy1;

B1ðn; sÞ ¼
1

d
blny2; B2ðn; sÞ ¼ � 1

d
blsy2;

y1 ¼ d1kðs þ nÞ þ q2d3; y2 ¼ d1kðn � sÞ þ q2d3;

B3ðn;�sÞ ¼ 1

d
lq2y3ðn; sÞ; B3ðn; sÞ ¼

1

d
lq2y3ðn;�sÞ;

y3ðn; sÞ ¼ bðn þ sÞd1 þ ðk þ 2lÞq2d3;

B1ðn;�nÞ ¼ B2ðn;�nÞ ¼ � 2

d
d1m2n2;

B3ðn;�nÞ ¼ B3ðn; nÞ ¼ 0; B1ðn; nÞ ¼ B2ðn; nÞ ¼ 0

ð4:22Þ
and
oB1

op
ðn; nÞ ¼ � oB2

op
ðn; nÞ ¼ 1

d
nE1;

oB1
op

ðn;�nÞ ¼ 1

d
nE2;

oB2

op
ðn;�nÞ ¼ � 1

d
nE3;

oB3

op
ðn; nÞ ¼ 0;

oB3
op

ðn;�nÞ ¼ � 4

d
ln2bd1;

E1 ¼ d1½b2 � fðk þ 3lÞ	 þ 2blnd3;

E2 ¼ d1½fð3k þ 5lÞ � 3b2 � 4aðk þ lÞn2	 � 2blnd3;

E3 ¼ d1½4aðk þ lÞn2 þ b2 � fðk � lÞ	 þ 2blnd3:

ð4:23Þ
With the help of (4.21)–(4.23), we obtain from (4.20) the following forms for U , W and U,
4aq4n4U ¼ 2

ds
n5blðy2esz � y1e�szÞ � 1

d
2d1m2ð2n2
�

� q2 � nq2zÞ þ q2E2

�
n3e�nz � 1

d
E1q2n

3enz;

4aq4n4W ¼ � 2

d
n4blðy1e�sz þ y2eszÞ � 1

d
2d1m2ð2n2
�

� q2 � nq2zÞ � q2E3

�
n3e�nz þ 1

d
E1q2n

3enz;

4aq4n4U ¼ 2

ds
n4lq2 y3ðn;½ � sÞesz � y3ðn; sÞe�sz	 þ 4

d
n4q2lbd1e�nz:

ð4:24Þ
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Taking the inverse Hankel-transformations we find that, for z < h, the functions u, v and u are given by
4aq4uðr; zÞ ¼H1

2

ds
nblðy2esz

�
� y1e�szÞ� 1

dn
2d1m2ð2n2
�

� q2 � nq2zÞþ q2E2

�
e�nz� 1

dn
E1q2enz; n ! r



;

4aq4wðr; zÞ ¼H0

1

dn
E1q2enz

�
� 1

dn
2d1m2ð2n2
�

� q2 � nq2zÞ� q2E3

�
e�nz� 2

d
blðy1e�szþ y2eszÞ; n ! r



;

4aq4uðr; zÞ ¼H0

4

d
q2lbd1e�nz

�
þ 2

sd
q2l y3ðn;½ � sÞesz� y3ðn;sÞe�sz	; n ! r



:

ð4:25Þ

It is easy to see that the functions u, w and u given by (4.25) satisfy the boundary conditions (4.1).

We introduce the notations
Y1ðnÞ ¼
1

n
4aq2ðk
�

þ lÞn2 � 2aðk þ 2lÞq4 þ 3m2q2 � 2m2ð2n2 � nq2zÞ
�
Z1 þ 2blq2 Z3

�
þ 1

2p
Penh

�
;

Y2ðnÞ ¼
1

n
4aq2ðk
�

þ lÞn2 þ m2q2 � 2m2ð2n2 � nq2zÞ þ 2lq2f
�
Z1 þ 2blq2 Z3

�
þ 1

2p
Penh

�
;

Y3ðnÞ ¼ lq2 bðn



þ sÞZ1 þ ðk þ 2lÞq2 Z3
�

þ 1

2p
Pesh

��
:

ð4:26Þ

For z > h, the components of displacement vector field and the volume fraction field have the expressions
4aq4uðr; zÞ ¼ H1 Y1ðnÞe�nz

�
� 2

s
n2PðnÞe�sz; n ! r



;

4aq4wðr; zÞ ¼ H0 Y2ðnÞe�nz

�
� 2

s
n2PðnÞe�sz; n ! r



;

4aq4uðr; zÞ ¼ H0 4q2blZ1ðnÞe�nz

�
� 2

s
Y3ðnÞe�sz; n ! r



:

Let us study now the case of the following concentrated body force
fr ¼ � F



2pr
dðrÞdðz� hÞ; fz ¼ 0; l ¼ 0; ðh > 0Þ; ð4:27Þ
where F 
 is a given constant. In this case we have
F ¼ � F



2p
e�ph; G ¼ 0; L ¼ 0;
and the relation (4.3) imply that
N1 ¼ � 1

2p
F 
e�nh; N2 ¼ � 1

2p
F 
ðc1 � nhÞe�nh; N3 ¼ � 1

2p
F 
kne�sh:
It follows from (4.8) that
tzzðr; 0Þ ¼
F 


2pq

Z 1

0

1

dðnÞ ðq2hq
�

� 2blknÞe�nh þ 2blkne�sh
�
n2J0ðnrÞdn;

tzrðr; 0Þ ¼ � F 


2pq

Z 1

0

1

dðnÞ q2qðc2
��

� c1Þ þ q2qhn � 2blkns
�
e�nh þ 2kbln2e�sh

	
nJ1ðnrÞdn;

hzðr; 0Þ ¼ � F

k
2p

Z 1

0

ðc2
�

� c1Þðe�sh � e�nhÞ þ ðs � nÞhe�nh
�
n2J0ðnrÞdn:

ð4:28Þ
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We can study the effects inside the medium as in the case of the concentrated extrinsic equilibrated body

force.
5. The Neumann problem

In this section we assume that the boundary z ¼ 0 is stress-free. Thus we have the boundary conditions
tzzðr; 0Þ ¼ 0; tzrðr; 0Þ ¼ 0; hzðr; 0Þ ¼ 0: ð5:1Þ

It follows from (4.7) and (5.1) that
ðk þ 2lÞW ð1Þ þ knU ð0Þ þ bUð0Þ ¼ 0; U ð1Þ � nW ð0Þ ¼ 0; Uð1Þ ¼ 0: ð5:2Þ

In view of (5.2), the relations (3.18) reduce to
2lnðU ð0Þ þ W ð0ÞÞ � bUð0Þ ¼ N1;

lnð1þ c1 þ c2ÞU ð0Þ þ ½ðk þ 2lÞn � kc1n þ ðk þ 2lÞc2n � bc3	W ð0Þ � ðbc2 � anc3ÞUð0Þ ¼ N2;

2lksnU ð0Þ þ ½kðk þ 2lÞs2 � kkn2 � bq2	W ð0Þ þ sðaq2 � bkÞUð0Þ ¼ N3;

ð5:3Þ
where Ni are given by (4.3).

We introduce the notations
M1 ¼ ln½bð1þ c1 � c2Þ þ 2anc3	;

M2 ¼ b½ðk þ 2lÞnð1þ c2 � c1Þ þ 2lnc1 � bc3	 � 2lnðbc2 � anc3Þ;

M3 ¼ 2aq2lsn;

M4 ¼ kbs½ðk þ 2lÞs � 2ln	 þ q2ð2lnas � b2Þ � bkkn2;

X ¼ M1M4 �M2M3;

R1 ¼ bN2 � ðbc2 � anc3ÞN1; R2 ¼ bN3 þ sðaq2 � bkÞN1;

W1 ¼ R1M4 � R2M2; W2 ¼ R2M1 � R1M3:

ð5:4Þ
From (5.3) we obtain
U ð0Þ ¼ 1

X
W1; W ð0Þ ¼ 1

X
W2; bUð0Þ ¼ 2lnðU ð0Þ þ W ð0ÞÞ � N1: ð5:5Þ
Thus we can find the components of displacement field and the volume fraction field at the stress-free

boundary
uðr; 0Þ ¼ H1

1

XðnÞW1ðnÞ; n



! r

�
;

wðr; 0Þ ¼ H0

1

XðnÞW2ðnÞ; n



! r

�
;

buðr; 0Þ ¼ H0

2ln
XðnÞ ðW1ðnÞ



þ W2ðnÞÞ � N1ðnÞ; n ! r

�
:

ð5:6Þ
If we use the relations (5.1) and (5.5) then we obtain
ow
oz

ðr; 0Þ ¼ H0

1

k þ 2l
N1



� n

X
W1

�
þ 2l

k þ 2l
W2

�
; n ! r

�
:
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It follows from the constitutive equations that the non-vanishing stresses on the boundary z ¼ 0 are given

by
trrðr; 0Þ ¼ 2l
Z 1

0

n
X

W1 2nJ0ðnrÞ

�

� 1

r
J1ðnrÞ

�
þ 2l
ðk þ 2lÞXW2n

2J0ðnrÞ �
n

k þ 2l
N1J0ðnrÞ



dn;

t##ðr; 0Þ ¼ 2l
Z 1

0

n
X

W1 nJ0ðnrÞ

�

þ 1

r
J1ðnrÞ

�
þ 2

X
n2lW2J0ðnrÞ �

n
k þ 2l

N1J0ðnrÞ


dn;

hrðr; 0Þ ¼ � a
b

Z 1

0

1

k þ 2l
N1



� n

X
W1

�
þ 2l

k þ 2l
W2

��
n2J1ðnrÞdn:

ð5:7Þ
Let us consider now the case of the concentrated extrinsic equilibrated body force defined by (4.11). In this

case, from (4.11), (5.3) and (5.4) we obtain
N1 ¼ 0; N2 ¼ � P
2p

c3e
�nh; N3 ¼ � P

2p
q2e�sh;

W1 ¼ � Pb
2p

ðc3M4e
�nh � q2M2e

�shÞ;

W2 ¼ � Pb
2p

ðq2M1e
�sh � c3M3e

�nhÞ:

ð5:8Þ
The functions u, w and u at the stress-free boundary are given by
uðr; 0Þ ¼ � Pb
2p

Z 1

0

1

XðnÞ ðc3M4e
�nh � q2M2e

�shÞnJ1ðnrÞdn;

wðr; 0Þ ¼ � Pb
2p

Z 1

0

1

XðnÞ ðq
2M1e

�sh � c3M3e
�nhÞnJ0ðnrÞdn;

uðr; 0Þ ¼ � Pl
p

Z 1

0

1

XðnÞ ½q
2ðM1 �M2Þe�sh þ c3ðM4 �M3Þe�nh	n2J0ðnrÞdn:

ð5:9Þ
The relations (5.7) reduce to
trrðr; 0Þ ¼ � Pbl
p

Z 1

0

n
X

c3M4e
�nh

��
� q2M2e

�sh
�
2nJ0ðnrÞ



� 1

r
J1ðnrÞ

�

þ 2ln
k þ 2l

ðq2M1e
�sh � c3M3e

�nhÞJ0ðnrÞ


dn;

t##ðr; 0Þ ¼ � Pbl
p

Z 1

0

n
X

c3M4e
�nh

��
� q2M2e

�sh
�

nJ0ðnrÞ



þ 1

r
J1ðnrÞ

�

þ 2lnðq2M1e
�sh � c3M3e

�nhÞJ0ðnrÞ


dn;

hrðr; 0Þ ¼ � Pa
2p

Z 1

0

1

X
c3M4e

�nh



� q2M2e

�sh þ 2l
k þ 2l

ðq2M1e
�sh � c3M3e

�nhÞ
�
n3J1ðnrÞdn:
As in the case of Dirichlet problem we can study the effects inside the body.
6. Numerical results

In this section we approximate numerically some of the components of stress tensor, displacement vector

and the equilibrated stress. The numerical results are displayed graphically.
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If we introduce the notations
y2 ¼ f
a
; j2 ¼ a

f
q2; m ¼ k

2ðk þ lÞ ; g ¼ b
f
y2; ð6:1Þ
then from (4.5) we obtain
qd ¼ lfxðnÞ; ð6:2Þ

where
xðnÞ ¼ 2ð1� mÞ
1� 2m

y2j4 þ y2j2 þ 2ðj2 � 1Þnðs � nÞ: ð6:3Þ
Clearly, from (3.13) we have
s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ y2j2:

q

It follows from (4.14) that
tzzðr; 0Þ ¼ � P
p

gj2

Z 1

0

1

xðnÞ ðe
�nh � e�shÞn2J0ðnrÞdn;

tzrðr; 0Þ ¼ � P
p

gj2

Z 1

0

1

xðnÞ ðe
�nh � e�shÞn2J1ðnrÞdn;

hzðr; 0Þ ¼ � P
p

Z 1

0

1

xðnÞ y2j2 2ð1� mÞ
1� 2m

j2


�
þ 1

�
e�sh � 2ð1� j2Þnðs � nÞe�nh



nJ1ðnrÞdn:

ð6:4Þ
On the basis of (2.5) we have q2 > 0, y2 > 0. Clearly,
j2 ¼ 1� b2

fðk þ 2lÞ :
Since k þ 2l > 0, we find that the relations (2.5) imply the following restriction
j2
6 1: ð6:5Þ
We present numerical computation for r lying between 0 and 3 assuming that m ¼ 0:25, y2 ¼ 1 and g ¼ 1.

We assume that the concentrated load acts at the point ð0; 0; 1Þ. We let the coefficient b to vary between

zero and infinity and study the variation of stresses. The interval ð0;1Þ for a is reduced to the interval (0,1)

for j2. We consider the values of j2 given by 0.25, 0.5 and 0.75.

The integrals which appear in (6.4) are of the form
Z 1

0

e�xf ðxÞdx:
The numerical approximations of these integrals have been intensively studied (see, e.g. Krylov, 1962).

We use the Gaussian–Laguerre quadrature formulas and the results presented in Gradstein and Rizhik

(1971) to approximate them numerically. The variation of the normal force-stress and the equilibrated
stress under the action of a concentrated extrinsic equilibrated body force are presented in Figs. 1 and 2.

We now consider Neumann problem in the case of the following concentrated body force
fr ¼ 0; fz ¼ � 1

2pr
P 
dðrÞdðz� hÞ; ‘ ¼ 0; ðh > 0Þ; ð6:6Þ
where P 
 is a given constant. From (4.3) we obtain
N1 ¼ Me�nh; N2 ¼ Mðc2 � nhÞe�nh; N3 ¼ ksM�sh; ð6:7Þ



Fig. 1. Variation of the normal force-stress ð�2p=PÞtzzðr; 0Þ with r and j2 under the action of a concentrated extrinsic equilibrated body

force.

Fig. 2. Variation of the normal equilibrated stress ð�2p=PÞhzðr; 0Þ with r and j2 under the action of a concentrated extrinsic equili-

brated body force.
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where
M ¼ � 1

2p
P 
:
In what follows we assume that m ¼ 0:25, y2 ¼ 1, g ¼ 1 and h ¼ 1. From (5.4) we find that
qM1 ¼ 2b2l2nð2n2 � 3j2Þ; qM2 ¼ 2b2l2nð2n2 � 1Þ;

M3 ¼ 2blj2sn; M4 ¼ 2
3
bnðbn � bs þ 3j2lsÞ;

ð6:8Þ
where
X1 ¼ ð2n2 � 3j2Þ½bðn � sÞ þ 3j2ls	 � 3j2lsð2n2 � 1Þ: ð6:9Þ



Fig. 3. Variation of the normal displacement ð�4pl=P 
Þwðr; 0Þ with r and j2 on the stress-free boundary of the half-space under the

action of a concentrated body force.
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It follows from (5.4) and (6.7) that
qR1 ¼ b2lnMe�nð3j2 þ 2n � 1Þ;
R2 ¼ sbM½ð1� j2Þe�s þ ð2j2 � 1Þe�n	;
qW2 ¼ 2b3l2snM ð2n2

�
� 3j2Þ ð1

�
� j2Þe�s þ ð2j2 � 1Þe�n

�
� j2nð3j2 þ 2n � 1Þe�n

	
:

ð6:10Þ
Thus, from (5.6) we obtain
ð�4pl=P 
Þwðr; 0Þ ¼
Z 1

0

ð1
�

� j2Þð2n2 � 3j2Þe�s þ ð3
�

þ n þ 2n2Þj2 � 3ð2þ nÞj4 � 2n2
�
e�n

	
sV ðnÞJ0ðnrÞdr;

ð6:11Þ
where
V �1 ¼ ð2n2 � 3j2Þð1� j2Þðn � sÞ þ j2sð1� 3j2Þ: ð6:12Þ

In Fig. 3 we show the variation of the normal displacement on the stress-free boundary of the half-space

which is subjected to the action of a concentrated body force applied at the point ð0; 0; 1Þ of the half-space.
We conclude that for small values of r there is a difference between the solution of the classical elasto-

statics and the solution of the problem in the context of the theory of elastic materials with voids. We note

that this difference is larger with the increasing values of the constant b. In a similar way we can study the
behavior of the radial displacement and the volume fraction function.
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