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Abstract

This paper is concerned with the linear theory of elastic materials with voids. The Dirichlet and Neumann problems
for a half-space are studied by using the technique of integral transforms. The case of a concentrated body load is
investigated in detail.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Axially; Symmetric; Elastic

1. Introduction

The theory of materials with voids was initiated by Nunziato and Cowin (1979). In recent years
this theory has been a subject of intensive study. The intended application of the theory are to geologi-
cal materials and to manufactured porous materials. In this theory, the bulk density is written as the
product of two fields, the matrix material density field and the volume fraction field. This representation
introduces an additional degree of kinematic freedom. The linear theory of elastic material with voids has
been established by Cowin and Nunziato (1983). Various applications of the theory were presented by
Cowin and Puri (1983), Cowin (1983), Chandrasekharaiah (1989), Scarpetta (1990) and Ciarletta and Iesan
(1993).

In this paper we consider the equilibrium theory of an elastic material with voids that occupies a half-
space and is subjected to an axially symmetric deformation. First, we employ the technique of integral
transforms to obtain a general solution of the Lamé equations for an arbitrary system of loads. Then, we
study the case of a half-space with a fixed boundary and subjected to a concentrated extrinsic equilibrated
body force. The stresses have been evaluated at the boundary and the displacement field and the volume
fraction field have been determined in the interior of the body. The problem of a half-space with a stress-
free boundary is also investigated.
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2. Basic equations

Throughout this section B is a regular region of the three-dimensional Euclidean space. We let 0B denote
the boundary of B, and designate by n the outward unit normal of 0B. We assume that the region B is
occupied by a linearly elastic material with voids. The body is referred to a system of rectangular Cartesian
axes Ox;. Throughout this paper, Latin indices have the range 1-3. Let u be the displacement field over B.
The linear strain measure e;; is given by

1
ey = 5 + ). (2.1)
We use subscripts preceded by a comma for partial differentiation with respect to the corresponding co-
ordinate.
Let #; be the stress tensor and let A, be the equilibrated stress vector. The components of surface traction
t; and the equilibrated stress 4 at a regular point of 0B are given by

t,‘ = tﬁnj, h = h,‘l’l,‘, (22)
respectively.
The equilibrium equations are
tji.j +ﬁ:0, hi‘i+g+l:0, (23)

where f; are the components of body force, g is the intrinsic equilibrated body force, and / is the extrinsic
equilibrated body force.
In the case of centrosymmetric isotropic material the constitutive equations are

tij = )ve,.,é,:,ﬂ + 2/161:/' + ﬁ(Pé,‘j,
hi = o, (2.4)
8= _ﬁerr - Cq)v

where ¢ is the volume fraction function, J;; is Kronecker’s delta, and A, u, ff, « and { are constitutive
coefficients. We restrict our attention to homogeneous materials so that the constitutive coefficients are
constants. We assume that the internal energy density is a positive definite form. This assumption implies
that (Cowin and Nunziato, 1983)

u>0, «>0 (>0, 2u+31>0, (2u+32)>3b. (2.5)

3. Axially symmetric problems

We assume that the region B from here on refers to the half-space x; > 0. In what follows we are in-
terested in axially symmetric problems with the displacement field and the volume fraction being specified
in cylindrical coordinates (r,9,z) as follows

u,:u(r,Z), u19:07 uz:W(r7Z)7 @ZQD(er)a (I’,Z) €3. (31)
The geometrical equations become

Ou u ow 1 (au a_w

€ = 57 €yy = ;7 € = 57 €z = 5 & + or )7 €y = 07 €y: = 0. (32)
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The constitutive equations reduce to

by = le + 2,uerr + ﬁ@, Loy = le + 2/”'_11'1 + ﬁqov
t. = Ae+ 2ue.. + fo, tg =ty, =0,

t, = 2;uerza hr = aai, hﬂ = 0, (33)
or
0
hz_aa_(p7 g__ﬁe_C(P7
zZ
where
10 ow

e—;ar(ru)—i—g. (3.4)

In the case of axisymmetry the equilibrium equations take the form

ot, Ot, 1 B
or + oz + ; (trr - tﬂﬂ) +ﬁ - Oa
o, ot., 1
et . =0, (3.5)
o 0z r
190 oh,

Egs. (3.5) can be expressed in terms of u, w and ¢
1 Oe dp
,u(A —r—z)u-i-(l-‘rﬂ)&‘i‘ﬁa‘i‘fr =0,

Oe 110
A A — — =

pAw + (2 “‘)aﬁﬁaz + /. =0,

adp — Pe—Cp+1=0,
where
? 10 @
o2 ror 02
We assume that all stresses, displacements and volume fraction vanish at infinity.

We introduce the following Hankel-transforms (Sneddon, 1972)

U(&z) = /030 ru(r,z)Ji (Er)dr,

A= (3.7)

W2 = [t dr (3:5)

®(&z) = /0OO ro(r,z)Jo(Er)dr,

where J,(z) is the Bessel function of the first kind and nth order. Applying Hankel transformation to Eqs.
(3.6), we obtain

D — (4 20)E)U — (4 + n)EDW — BE@ + F = 0,
(A + p)EDU + (A + 2u)D* — ué|W + pDP + G = 0, (3.9)
[(D* — &) = {]& — BEU — BDW + L = 0,
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where we have used the notations

d .
D= &z F(&z) = /O rfr(r,2) 01 (&r) dr

% o (3.10)
G(f,z):/o rf;(r,z)Jo(&r)dr, L(f,z):/o rl(r,z)Jo(ér)dr

In what follows we designate by g the Laplace transform of the function g with respect to z, i.e.,
sep) = [ slezerdz Rep>o.
From (3.9) we obtain the equations
[up* — (44 201U — (4 + p)&pW — BEP =R,
(2+ wpU + [(2+ 2p)p" — p& W + fp® = S, (3.11)
[w(p? = &) = & — BU — ppW =T,
where
WU +pU") = (+ W)W T,
(2+weU” + 2+ 20 (WY + pwV) - G,
(@Y 4 p@ )y — W — T,
vl(E) = (DU)(E0), UG =U(0),
wi(E) = (DW)(E,0), W) =W(E0),
V(&) = (DD)(E,0),  dV(E) = D(¢,0).

We introduce the notations

R =
S
T

(3.12)

2 1 1 Q2 _ 2
q _O(()L+2H)[C(/L+2’u) ﬁ]? T= 6 +q27

A=o(pP =&V =7),  a=pa(i+2u),
I'y =RM + SN + TQ, I'y=RM"+ SN* + 10",
I's = u(p* = E)BER + ppS + (4 + 2u) (p* — )T,
M =oap(p* = &) + (pP° = a2+ wp* = Ll + P (B = L2+ ),
N = pela(Z+m)(p* = &) + B = L4+ p),
Q=puc(p’ = &), M =—pHU+plp’-&) -+ 5},
=1’ - &) = 2+ &’ - &) - - &,
= —Bup(pP® = &).
It follows from (3.11) that for A different from zero we have
1
=
The function U, W and & must have no singularities in the right half-plane of the variable p. This fact
implies the conditions

(3.13)

(U, W,®) =—(I',T,T3). (3.14)
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ol

Fk(ia 5) = 07 E(é) é) = 07 Fk(é7‘c) = 0. (315)

The conditions (3.15) reduce to

R(¢, &) +58(¢,¢) =0,
NR(E &) +1S(E,8) + 13T (S, €) + ¢2(8) =0, (3.16)
KIER(E,7) +18(& 7)) + ¢°T(E,7) =0,

where
oy =20[(A+ W& — (A+2w)q",  pra= A+ w20 =)+ B,

p

P73 = 2Bué, p = B2 = L2+ p), k= (3.17)

(&) = uU9(&) + (2 + 2y O (&) —%(5,@ - Z—If(f,f).

It is easy to see that the relations (2.5) imply that p is different from zero.
In view of (3.12), the relations (3.16) take the form
pUY +EU) + (24 weU” =) + 2+ 20D + W) = (F + G)(&, 9),
nUY +EU) — A+ e + 9, [(4+ @)U + G+ 20w + W O)]
+ 93 [o(@V + E@O) — O] + E[uUO + (4 + 20 O]
= F(£,8) + 7,6 &) +1L(E &) + 5(2—5+2—§) (.9 o
{EUY +<UO) — A+ wew O] + <[4+ weu® + G+ 2w + v @)]}
+ @ [o( @V +2@0) — pw O] = kEF (&, 7) + ktG(E,7) + ¢°L(E, 7).

In what follows we consider two cases: (i) a half-space with a fixed boundary; (ii) a half-space with a stress-
free boundary. The method of integral transforms has been used to study axisymmetric problems in various
theories of continua (see, e.g. Nowacki, 1971; Sneddon, 1962; Khan and Dhaliwal, 1977).

4. The Dirichlet problem—concentrated body loads

In this section we consider that the boundary z = 0 is fixed and consider the boundary conditions
u=0, w=0, ¢=0 atz=0. (4.1
In this case we have U® =0, W =0, © = 0 and the conditions (3.18) reduce to
pUW + (420w = Ny,
U 4+ 9,(2 4 20 W 4 p300) = N, (4.2)

kEpUW + k(A + 20w + g*od) = N3,
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where

Ni(&) =F(£¢) +G(&9),

Wa(E) = FIE. &) 410806 &)+ TIE )+ € 5+ 50 ) (€. 3)
P P

N3(&) = kEF(E,1) + ktG(E, 1) + ¢*L(E, 7).
The solution of the system (4.2) is given by

1 1 1
put =—di, (20 ==do, 0V = ds, (4.4)

where
d=(y,— Vl)qz — kys(r = &), dy =N, (q2V2 —kty;) — Nag® + 73NV,
dr = ¢*Ny — p3N5 = Ni (g%, — ky38),
dy = (7, = 71) (N3 — kENy) — k(T = (N2 — 7 V1),
p(r2 =) = (2431~ B

We introduce the Hankel-transforms

T.(&z2) = /000 1t (r,z)Jo(Er) dr,
T.(&z2) = /000 rt,(r,z)Jy (Er)dr, (4.6)

I1.(¢,2) = /000 rh,(r,z)Jo(Er)dr.

It follows from (3.3) that
T.. = (A+2u)DW + JEU + B,
T, = u(DU — W),  II. = aD®.
In view of (4.1), (4.4) and (4.7) we obtain
t(r,0) = Ho[Z:(¢); € — 7],
t(r,0) = Hi[Z1(&); € — 7], (4.8)
he(r,0) = Ho[Z3(¢); € — 7],
where Z;, = d;/d and

m@@xadzlw@@awma (49)

Similarly, from (3.3) and (4.4) we find that

A

tr,-(l”7 O) = l‘gy(l", 0) = m

t.(r,0),
(4.10)

h.(r,0) =0, g(r,0)=— t.(r,0).

B
A+2u
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Now, we consider the case of a concentrated extrinsic equilibrated body force. We assume that

ﬁ‘:O7 fZ:Oa 12_75( )5( h)7 h>0a

2nr
where P is a given constant and J is the Dirac measure. Thus, we obtain
F=0, G=0, L=——¢""
In this case, from (4.3) we have
Ni=0,  N=pLEE), Ny=¢LE ).

By (4.8) we find the following stresses at the boundary

(7, 0) ——ﬁuq / e _ e Jy(Er) dE,
P >~ 1 ;
t..(r,0) = —Eﬂﬂqz/o mfz(efﬂl —e M (ér)dé,

00) = =5 [ gl = e = 2k(e ) ke e (er) a

From (4.10) we can obtain #,., tyy and g for z = 0.
Let us study now the effects inside the body. It follows from (3.13) and (3.14) that

(U, w,

~ 2nia / (p* —12) (pz &2y 5 (I, 1, T5)(¢, p) dp,

5277

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

where C is the Bromwich path of integration and i = v/ —1. In the case of the body loads (4.11) the functions

I', have the form

Iy =A™ + By,

(4.16)

where 4; and B, are polynomials in p with coefficients that depend on &. In the right-half of p-plane U, W

and @, as functions of p, have no poles. The integrands in (4.15) have one double pole at p = —¢ and a
single pole at p = —1. By using the method of residues we obtain, for z > 4, the following expressions for U,
W and ¢

0
_(F17F27F3)(67 - é) e*(

4ag (U W, 0) = L8 — ¢ = &N T D) (E - ) - 48

2
—;54(F17F27F3)(§, —1)e "

(4.17)
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From (3.12), (4.1), (4.4), (4.5) and (4.13) we find that

R=2, S=2, T=2-1L,

P —1 —¢h
dy=—d, = —Eﬁuéqz(e "), (4.18)

dy = — % (72 = 7)pg’e™ = 2k(x — &) puce"].

To obtain the functions U, W and @ from (4.17) we note that
Fl(év _6) = F2(57 _5) = _2m2£2217 F3(67 _é) = 07

m2:(1+.u)cfﬁ27 Fl(é7ir):5Ha Fz(f,*f):‘fﬂ,
I = k(& + )2 + Pug’ (Zs + z—lnPe”),

Is(E—1) = [ﬁ(é L 0Z (2 <23 + ;P>] ,
4 (4.19)

S (6=0) = ~EHa( )& = 2200+ 2007 + ]2~ 2 (23 + %Pefh) :

|
S 60 = ~¢Hal ) + 2ul] s~ 2 (Z3 + EPe@h),

aF3 _ 2
a(f, —&) = —4pucz.
In the case z < A, the functions 4; from (4.16) have no contribution in the expressions of U, W and @, and
we obtain
2
4aq4€4(U7 W7 ¢) = _;54[(B1)BZ7B3)(63 - T)eirz - (BlaB2)B3)(€7T)eTZ]
2 9 2 2.2 0 —&
+ 828" — ¢~ — &2q7)(B1, B2, B3) (&, — &) — g ¢ @(31732733)(57 =) |e
0
+ {f(qz — 28 — &°z)(By, By, B3) (&, €) — 6]2525(31,32,33)(57 f)] e,
(4.20)
where
1 1
B, :E[(M—N)dl + Od3), Bz:;[(M* — N")d, + O°ds),
| (4.21)
By = [B(E = p)dy + (24 20)(p* = E)b]u(p* - &),
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We note that
M(&,1) = M(E, —1) = kup&, N(& 1) = —N(¢, —1) = kPut,

0 1) = 0(¢ —1) = Pug’t,  M(& 1) = —M*(§,—7) = —kputé,
N'(& 1) =N'(&—1) = —kpp®,  OQ'(&1) = —0'(§,—1) = —Purg’,
M(E, &) =M(E,—¢) = -mE,  N(E&=-N(E - =-m&,
06,8 =0(6, -8 =0,  M'(§¢) =—M"(&,=¢) =m*E,

N*(&,&) =N*(¢,=¢) =m’E, 08¢ =-0(,-¢ =0,

1 1
Bi(&,—1) :Eﬁﬂéylv By(&, —1) :gﬁl”yla

1 1
Bi(¢ 1) = gﬁufyz, By(&,1) = —gﬁl”yz,

= dik(t + &) + ¢’ds, ¥ =dk(E— 1) + ¢’ds,

1 1
B3(€,_T) :Eﬂq2y3(£>f)a B3(57T) :Eﬂ‘]2J’3(f> _T)7
13(6,7) = B(E+1)di + (2 + 2u)q°ds,

2
Bl(éa _é) = BZ(&) _é) = _gdlmzéza

By(&,=8) =B3(,8) =0, Bi(( ) =B2(¢,8) =0

and
0= =g a0 =gE
N
aa_l;(g, £) =0, %(5, —§ = *g#é‘zﬁdlv

Ey = d[f? = {(A+3uw)] + 2Buéds,
Ey = dy[{(3+ 5p) = 3B — 4a(i + p)&] — 2Buéds,
Ey = di[8a(i + )& + B — ((4 — )] + 2Bpéds.

With the help of (4.21)-(4.23), we obtain from (4.20) the following forms for U, W and @,

2 1
4aq*&*U = = EBu(ye™ — ye ™) — =

2 ] 1
dag*&'w = — 5 EBulne™ + pe”) — = [2dim* (28 — ¢ — éq’z) — ¢Es]| EeE + 3E1qzé3eéi

d

2 4 .
dag*® = e Eng’ (&, — 1)e” — y3(&,1)e 7] + i EqPupdie=.

.1
y [2d1m2(2§2 _ q2 _ équ) + quz] é3efgz _ 5E1q2€3eéz,

5279

(4.22)

(4.23)

(4.24)
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Taking the inverse Hankel-transformations we find that, for z < 4, the functions u, v and ¢ are given by

2 1 y 1 ;
4aq*u(r,z) = H, { afﬁ#(he” —ne ) - 3 [2dim* (28 — ¢ — éq°z) + P Ea e — d?Elqzegz; - F},
1 y 1 2
4aq4w(r,z) = H, { d—ﬁElqzegz — d_f [2d1m2(2§2 — q2 — fqzz) - q2E3] e ¢ — Eﬁ,u(yle’" +1»e”); E— r},

4 )
4aqp(r,z) = Ho{ quﬂﬁdle’cz +aq2u[ys(€, —1)e” —y3(&,1)e 7] E— r}-
(4.25)

It is easy to see that the functions u, w and ¢ given by (4.25) satisfy the boundary conditions (4.1).
We introduce the notations

n(é = % [40(5]2(2 + W& = 2a(i +2p)q* + 3mPg* — 2m>(2E* — ﬁqzz)]Zl + 2Buq’ <Z3 + zlnPeih>,

1 1
RO = § [+ W 0?2 = 2) 4 2ud] 2+ 20 (24 Pt ),

Y3(8) = ug’ {/3(6 + 07+ (A +20)q (23 + %Pe“’ﬂ :
(4.26)

For z > h, the components of displacement vector field and the volume fraction field have the expressions

daq*u(r,z) = Hl{Yl(ﬁ)eiz — %izﬂ(f)e’”; E— r},
4aq4w(r, z) = H(){Y2(é)eiz - %ézﬂ(é)e’”; — r},

2
4aqp(r,z) = Ho{4q2ﬂu21(6)egz —h(Ge ™ - r}.

Let us study now the case of the following concentrated body force
F*

—2nr5(r)5(z —-h), f.=0, 1=0, (h>0), (4.27)

fr=

where F* is a given constant. In this case we have

— F* — _

F=——e"™ G=0, L=0,

2n
and the relation (4.3) imply that
1 . 1 . 1
_ _ _~ pxa—<h N N _ —Ch I —th
N1 = 27‘EF € s N, 27IF (’))1 éh)e s N3 27‘CF kée .

It follows from (4.8) that

00) =5 [ i e = 2uke)e 4 2pukce ) () de,

T 2np Jy d(©)
F* o0 1 B
e 0) = =5 / a7 {eln =70+ @phé = 2pukie]e™ + pude Jen(ende,  (428)
F*k

h(r,0) =

~ /0 = ) e ™ — e ) o (- Ephe ]y (Er) de.
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We can study the effects inside the medium as in the case of the concentrated extrinsic equilibrated body
force.

5. The Neumann problem

In this section we assume that the boundary z = 0 is stress-free. Thus we have the boundary conditions

t.(r,0) =0, ¢,(r,00=0, h(r,0)=0. (5.1)
It follows from (4.7) and (5.1) that
(A+20)w D 426U 4 g =0, UV —ew® =0, oV =0. (5.2)

In view of (5.2), the relations (3.18) reduce to
2uE(U0 + ) — o0 = N,
RE(L+ 91 + 7)) U0+ [(2+20)E = 2y &+ (A + 2007, — Brsl W — (B, — aéyy) @ = N, (5.3)
2uktEUY 4 [k(4 4 2u)7* — 2kE — BPIWO + t(ag® — pk) PO = Nj,

where N; are given by (4.3).
We introduce the notations

My = p&[B(1 + 7y, — 2) + 20&ys],

My = BI(4+2w)E(1 + 9, — 1) + 2uéyy — Brs] — 2ul(By, — alys),

M; = 204" g,

My = kBt(2+ 2p)t — 2pé] + ¢* (2péot — ) — phA&, (54)
Q = MMy — M>M;,

Ry = BNy — (By, — ays) My, Ry = N3 +t(ag” — Bk)Ny,

¥, = RiMy — RoM>,  W> = RoM; — R\ M.

From (5.3) we obtain

1 1
U® = 57 WO = e p Y = 2uE(UO + W) — N, (5.5)

Thus we can find the components of displacement field and the volume fraction field at the stress-free
boundary

u(r0) = I, [% (o) ¢ r],

w(r,0) = Hy [% ?(¢); &— ”], (5.6)
Bo(r.0) = H, [%(%(é) L) - N £ — ]

If we use the relations (5.1) and (5.5) then we obtain

ow 1 '3 2u
i —Hy | — N ==, +—E ). e
6z(r’0) 0[i+2,uN1 Q( 1+7»+2H 2>, ¢ ”]
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It follows from the constitutive equations that the non-vanishing stresses on the boundary z = 0 are given
by

*© 1 2
l‘r,(l"7 0) = 2‘11/0 {é?l |:2£J0(él’) — ;J](éi’):| +m ?’zfzjo(fr) — ﬁNlJo(éi’)}dé,

*© 1 2
1‘7919(1"7 0) = 2,[1-/0 {élpl |:6J0(§V) + ;Jl(ér)] +§€2MIP2JO(£F) — ﬁNlJo(gyr)}df, (57)

o« o 1 & 2u 2
h(r,0) = _B/o {mzvl —§<% +m%>}éﬁ(ér)dé-

Let us consider now the case of the concentrated extrinsic equilibrated body force defined by (4.11). In this
case, from (4.11), (5.3) and (5.4) we obtain

P P
N1 = 0, N2 = ——})367@ N3 = ——q2€71h

2n ’ 2n ’
P .
Y, = —2—£(y3M4e’*h — ¢’ Mye™), (5.8)
Pp . e
¥, = _ﬂ((fMle h_ y3M3e gh).
The functions u, w and ¢ at the stress-free boundary are given by
P Rl | ;
) =~ 52 [ iz shae = e e (er)
w(r,0) = IRy - (@ Mye™™ — ysMze™ ") EJy(Er) déE (5.9)
) o o Q(é) 343 0 ) .
Pu (> 1

(p(l", O) =

= | O = M s (M — Mye () de

The relations (5.7) reduce to

© . 1
t(r,0) = 7P7ﬁ’u /0 é{(%MN_gh _ szze—rh) {2@]0(5}’) — ;Jl(ér)]
2u
A4+2u

00z } 1
11919(1”, 0) = _PTﬁ,Lt /0 é{(y3M4e§h _ qZMze—rh) [é]o(fr) + ;J](fr):|

+

(¢Mye ™ — V3M3eéh)-fo(fr)} dé,

+ 2ué (@ Mye™™ — psMae™M)Jy (ér) } dé,
Po 1 ¢ e 2u e _z
h(r,0) = ), © {%Mw I — M +m(f]2Mle " — My Ch)] ET(&r)dé.

As in the case of Dirichlet problem we can study the effects inside the body.
6. Numerical results

In this section we approximate numerically some of the components of stress tensor, displacement vector
and the equilibrated stress. The numerical results are displayed graphically.
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If we introduce the notations

”

i
2= Kzzz 2 \Jzi/L , :£2, 6.1
YT & Wt 1T (6.1)

then from (4.5) we obtain

pd = o (&), (6.2)
where
(&) = 21(1__2:))/216‘ + 913+ 2(k* — 1E(T = &). (6.3)

Clearly, from (3.13) we have

=&+

It follows from (4.14) that
P * 1

t.(r,0) = —— KZ/ —
(r0)=~—n AT

1x(r, 0) = —fnkz/ow%(e e ER(Er)de, (6.4)

=t [ e

On the basis of (2.5) we have g*>0,*>0. Clearly,

(=" — e~ E N (Er) dé,

K2+ 1} e ™ —2(1 — k*)E(t — e Ch}f«/l(f”) g.

2 1 _ ﬂz )
{(4+2p)
Since 4 4 2 > 0, we find that the relations (2.5) imply the following restriction
kr< 1. (6.5)

We present numerical computation for 7 lying between 0 and 3 assuming that v = 0.25,3> = 1 and 5 = 1.
We assume that the concentrated load acts at the point (0,0, 1). We let the coefficient f§ to vary between
zero and infinity and study the variation of stresses. The interval (0, o) for « is reduced to the interval (0,1)
for k. We consider the values of x? given by 0.25, 0.5 and 0.75.

The integrals which appear in (6.4) are of the form

/OOO e f(x)dx

The numerical approximations of these integrals have been intensively studied (see, e.g. Krylov, 1962).
We use the Gaussian—Laguerre quadrature formulas and the results presented in Gradstein and Rizhik
(1971) to approximate them numerically. The variation of the normal force-stress and the equilibrated
stress under the action of a concentrated extrinsic equilibrated body force are presented in Figs. 1 and 2.

We now consider Neumann problem in the case of the following concentrated body force

£=0, f_—lP*(S( \6(z—h), =0, (h>0), (6.6)

where P* is a given constant. From (4.3) we obtain

Ny = e, Ny=.l(y,— En)e ™", Ny =ktl™™, (6.7)
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+ e
0 1 2 3

Fig. 1. Variation of the normal force-stress (—2n/P)t..(r,0) with r and x* under the action of a concentrated extrinsic equilibrated body
force.

¥2=025
k2=05
®2=0.75

0 1 2 3
Fig. 2. Variation of the normal equilibrated stress (—2n/P)h.(r,0) with r and x? under the action of a concentrated extrinsic equili-
brated body force.

where

1
M = ——P*.
2n

In what follows we assume that v=10.25,3> =1, y =1 and & = 1. From (5.4) we find that

pMy = 27 PE28 = 317),  pMy = 2B42E(2E - 1),

(6.8)
M3 = Zﬁ,u;czr.f, M4 = %ﬂé(ﬁé - ﬂf + 3K2,UT)7

where

Q= (28 = 3A)[B(¢ — 1) + 3Pu1] — 3kut(2E* — 1). (6.9)
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N Classical Theory

0 1 2 3
Fig. 3. Variation of the normal displacement (—4mnu/P*)w(r,0) with » and x? on the stress-free boundary of the half-space under the
action of a concentrated body force.

It follows from (5.4) and (6.7) that
PRy = fPuédle (317 +2¢ - 1),
Ry = tpM[(1 —KkP)e ™™ + (2k* — 1)e 7], (6.10)
pWr = 2B 1Pl (28 — 3k [(1 — k?)e ™ + (2% — 1)e™¢] — k?E(3? +2¢ — 1)e ¢},

Thus, from (5.6) we obtain

(—4nu/ P Y)w(r,0) = /Om {(1=k)(28 = 3kP)e ™ + [(3+ &+ 28)K? = 3(2 + &)t — 28 ]e ™ }V (E)Jo(ér) dr,
(6.11)

where
V-t = (28 = 31?)(1 — k) (& — 1) + 1P1(1 — 3x?). (6.12)

In Fig. 3 we show the variation of the normal displacement on the stress-free boundary of the half-space
which is subjected to the action of a concentrated body force applied at the point (0,0, 1) of the half-space.

We conclude that for small values of r there is a difference between the solution of the classical elasto-
statics and the solution of the problem in the context of the theory of elastic materials with voids. We note
that this difference is larger with the increasing values of the constant f. In a similar way we can study the
behavior of the radial displacement and the volume fraction function.
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